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LUndpposble BOAAHbIE 3HAKU



LndppoBble BOAAHbIE 3HAKU A1 HEMPOCETEN
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Kakue ecTb aTakun Ha yaaneHue MapKUPOBKU?

-> Distillation Mogenb-y4eHMK meHbLIero paamepa, obyyeHHan
NoBTOPATb NOBeAEHUE TAXKENON U Bonee TOYHOM Moaenm-
yunTens, AOCTUTAeT CXOXKMX C HEWN pPe3yNbTaToB, 3HAYUTENIbHO
BbIMIPbIBAA B Ppa3Mepe U CKOPOCTU 3a CYET YNPOLLEHHOMN
apxutekTypbl [Hinton, 2015; Yang, 2019] .

> Pruning. bonbluoe KOMYecTBO NapamMeTpoB No3BoNAET
HENpPOCETU BbIIBNATbL C/I0XKHbIE 3aBUCUMOCTM B AAHHbIX U peLlaTb
TpyAaHble 3aaa4n. OgHaKO NPaKTUKA NOKa3bIBaET, YTO AN
xopolen paboTbl ceTn He TpebyeTca BCe KONMYECTBO
napameTpoB, KOTopble y Hee ecTb [Molchanov, 2019].

Hinton, G., et al(2015). Distilling the Knowledge in a Neural Network. ArXiv preprint

Le Merrer et al, (2020). Adversarial Frontier Stitching for Remote Neural Network Watermarking. Neural Comput. Appl.
Molchanov, et al (2019). Pruning Convolutional Neural Networks for Resource Efficient Inference. ICLR

Shafieinejad, et al (2021). On the Robustness of Backdoor-Based Watermarking in Deep Neural Networks. ACM

~ Model compression. OnTMMK3aLUKMA NAMATU, HANPUMeEp, ANA
MOBUNbHbIX YCTPONCTB MM |OT C OrpaHUYEHHbIMKW PECYpPCaMMK.
C)KaTue moaenu ocyLecTBAAETCA, Hanpumep, NyTem yaaneHua
HEeCYLLLeCTBEHHbIX MAapaMeTPOB 1 COKPALLEHUA CBA3EM MexXay
HEeMpPOoHaMM.

- Fine-tuning. MOXHO ynydwnTb moaenb ana onpeaeneHHbIx
BMAOB aHHbIX, HO U3MEHEHME NAPAaMETPOB MOKET NPUBECTU K
yAaneHuto mapku [Shafieinejad, 2021].



PeweHne — yepes cneumanbHbli HAOOP AaHHbIX

PaccmoTtpum K Knaccos B 3agaye Knaccndukaumum:

D = {(z, yi>}£\;1

QEZERd yzé[l,

Oby4yaem mncxoaHyto moaens f

L(D) = 5 Y1), v

K]

3710yMbILINEHHUK MOXKET MNOMNbITaTbCA YKPACTb
dYHKUMOHaNnbHOCTL f nocpeacTBom 0by4eHUA cypporaTHoOM
moaenu f* c ncnonb3oBaHmem cypporaTHoro Habopa AaHHbIX ANA
MMUTaLMK pe3ynbTtaTos f.

Y106bl 0OHAPYKUTL KPaXKy, Bnagenew, UCXOAHOM MOAEIN MOXKET
NPUMEHUTb BOAAHbIE 3HAaKMN HAa OCHOBe Habopa TpUrrepos.
MoAMHOXeCTBO MCXOAHOro Habopa AaHHbIX NoABepraeTcs
(nepeBoOpOTY METOK)

Ds — {(x%ka ylkz)}Z:l

Monyymm Tpurrep-Habop:
/ /
Dy = (@i U3, ) Jh=1 Vi 7 Vi

3aTtem ucxoaHas moaenb obydaetcs, YTo6bl MUHUMMU3UPOBATD
3MMNUPUYECKUN PUCK ANA U3MEHEHHOTO Habopa AaHHbIX.

D := (D\ D,)UD;

Ecnn nponssoauTenbHOCTb Nogo3putensHon mogenm f* Ha Dt
aHanornyHa npoussoguTenbHoctu f, Mbl 06bABNAEM ee

YKpaOeHHOU.
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Cno*»Hoctn noaxoaa

Pasmep n Habopa Tpurrepos AonKeH bbiTb HeEBONbLWMM, YTOObI HE BbI3BATb
3aMEeTHOro CHUXKeHMs nNponsBoauTenbHOCTU. C ApPYron CTOPOHbI, N A0NKHO bbITb
[0CTaTOYHbIM, YTODObI CXOACTBO NOBEAEHUA UCXOAHON MOAENN U YKPAAEHHOMN
Mmoaenn 6bIN0 CTaTUCTUYECKM 3HAYMMBbIM.

Habopbl TpUrrepos, KaKk NpaBu/Io, TPYAHO NEPEHOCUTb MEXKAY UCXOAHOWM
MOJENbI0 U YKPaAEeHHOM MoAeNblo: BbiIbOpKa U3 Habopa TpUITepoB OTTECHAETCA
OT BbIOOPOK TOrO Ke Knacca bamKe K rpaHuue peLleHua cypporaTHom moaenmu.

10



Probabilistically Robust Watermarking of Neural Networks

Hold-out Data

Base Model

D, f
Trigger Set A g Trigger Set
Generation Dt
Procedure

T(f ) Dh)
\_

—>

Parametric Set of
Proxy Models

Bs-(f)

—_—

Proxy Models

f17f27 "'7fm

v ,

Trigger Set Verification A
st. Vi,V fi(x) = f(x5)

Passed

o
! |-

Verified Trigger Set

* *
D; = {1, ..., 7,

}

1JCAI
JEJU 2024 =

@ NIRI




JKcnepmmeHTabHble NoaxoAbl

Soft-label. Habop obyuatowmnx aaHHbIX D U3BECTEH, U, yYUTbIBAS
BXOAHble AaHHbIE X, BbIXOAHbIE AaHHble f(x) ncxoaHon moaenu
npeacTaBNAT cOb0I BEKTOP BEPOATHOCTEN KNacCoB.
CypporaTHas mogenb f* obyyeHa MUHUMN3NMPOBATL GYHKLMOHAN
oT

LoalD) = o= 3 Dual (@), f* (@),

.T?Z'E@

Hard-label. Habop obyyatouimnx aaHHbIX D U3BECTEH, U, yYUTbIBAS
BXOHble AaHHbIE X, BbIXOAHbIMW AaHHbIMM f(X) ncxogHoOM
MOJENN ABNAETCA METKa Knacca, Ha3HavyeHHana f BXxogHbim
AAHHbIM X. 9TOT NapameTp COOTBETCTBYET 0byyeHUto

CYppOraTHOM Moaenn Ha Habope AaHHbIX.

ﬁ = {x’Hf(x’t) 'fil'

RGT (Regularization with Ground Truth Label). O6yuyeHue
CypporaTHon moaenn, MMHUMKU3NPYA NoTepn B Habope
obyyatowmx aaHHbIx D n KL-div mexKay BbIXOAHbIMU AaHHbIMMU
NCXOAHOM MOAENN N CyppPOraTHOM Mmoaenu oaHoBpemMeHHo [Kim
et al., 2023].

TaKaA HacTpOMKa COOTBETCTBYET MUHMMMU3ALMWN BbIMYKAOM
KombWHauum notepb OT:

LRGT(D71A)7 7) — 7Lext(2§) + (1 - V)L(D)a

v € [0, 1] — KoadPurumeHT perynapmsaumnm. B Hawmx
3KCMepPMMEHTAX 3TO CaMas CUIbHAA aTaKa No Kpaxke
OYHKLUMOHANbHOCTW.



Results

Method

Metric

Source model f

Surrogate models f*

Soft-label Hard-label RGT
EWE [Jia et al., 2021] 86.10£0.54  83.974+1.02 82.22+0.50 88.88+0.35
RS [Bansal et al., 20221 e 10 ace % 84.17+1.01  88.93+1.18 89.62+0.97 90.14+0.08
MB [Kim et al., 2023] L 87.81+0.76  91.174+0.76 91.88+0.40 93.05+0.20
Probabilistic (Ours) 91.00 + 0.00  92.60 091 94.87+0.59 99.42 + 0.02
EWE [Jia et al., 2021] 26.88+8.32  51.01+5.58 36.05+6.48 1.64+1.05
RS [Bansal et al, 20221 .o %) 95.67 + 4.93 7.674+4.04 6.33+1.15  3.00 +0.00
MB [Kim et al., 2023] = - 100.00 £0.00  82.00+1.00 51.334+4.93 72.67 +6.66
Probabilistic (Ours) 100.00 £0.00 85.10+6.33 73.70+4.65 78.00 +5.58
EWE [Jia et al., 2021] 55.11+1.67  53.00+1.57 46.784+1.00 63.73 +0.40
RS [Bansal et al., 20221 ap 100 20 %) ~ D9BTE2T8 6566153 6579039  64.9940.30
MB [Kim et al., 2023] - 62.13+4.36  67.66+0.36 70.65+0.49  70.24 + 0.46
Probabilistic (Ours) 6670+ 0.00  67.494+0.03 68.05+0.73 67.85+0.04
EWE [Jia et al., 2021] 68.14+10.16 30.90+11.34 15.10+5.64 5.73 +3.42
RS [Bansal ef al, 20221 .o %) 99.00 + 1.00 267+1.53 4.33+4.16  2.00+1.00
MB [Kim et al., 2023] g8 - (7 100.00 £0.00  70.67 £7.57 40.00+8.89 62.66 4 10.12
Probabilistic (Ours) 100.00 £ 0.00 78.80 £2.93 74.70+3.16 79.10 +2.77

Table 2: Watermarking performance is reported against functionality stealing methods. The best performance is highlighted in bold. It can
be seen that our approach outperforms the other methods of ownership verification by a notable margin.

A

Method f* D acc(D, f) acc(D*, f) acc(D, f*)  acc(D*, f*)

MB [Kim et al.. 2023] ResNet34 SVHN 87.81+0.76 100.0£0.00 63.994+3.90 72.00+6.08
” VGG11 CIFAR-10 87.81+0.76 100.0+0.00 86.00£2.17 32.00+7.21

Probabilistic (ours) ResNet34 SVHN 91.00+£0.00 100.0£0.00 73.01+1.18 77.7042.90
VGG11  CIFAR-10 91.00+0.00 100.0£0.00 89.24 £2.69 80.10+ 3.86

Table 3: Results of watermarking approaches in the setting when either the training dataset or source model’s architecture is unknown to the
adversary. Our approach outperforms the baseline in terms of the initial accuracy of the source model and the trigger set accuracy of surrogate
models.
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3aKkn4yeHne

HoBsbI noaxon, K dopmupoBaHuio LMdPOBbLIX BOASAHbIX 3HAKOB Ha OCHOBE Habopa
TPUITEPOB ANA 3aLWMUTbl UHTENNEKTYa/IbHON COBCTBEHHOCTM B KOHTEKCTE aTaK C Kparke

MOJENIN KYEPHOrOo SLLIUKaY.

MeTopa, co3aaeT Habopbl TPUITEPOB, KOTOPbIE C BbICOKOM BEPOATHOCTbIO MOMKHO
NePeHOCUTb MEXKAY UCXOAHOM MOAE/NbIO U CYPPOraTHbIMU MOAENAMM.

Moaxon He 3aBUCUT OT moaenn. HMKaKoro AononHUTeNbHOro obyyeHns mogenm He
TpebyeTca U He HaKMaAbIBAETCA HUKAKUX OrPaHUYeHn Ha pa3mep Habopa TpUrrepos.

Takmum obpasom, metoa NpumeHUm K ntobont moaenn bes yuiepba ana
NPOU3BOANTENBHOCTM U MUHUMA/bHbIX BbIYUCAUTENbHbIX 3aTPaT ANA reHepaummn Habopa

TPUITepOoB.
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Idea of DNN marking
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Figure 1: Concept. (left) The circle denotes the samples for classification, rhombus is the sample in the trigger set. Black and red line
indicates the decision boundary of the source model and its surrogate via stealing the functionality. To claim the ownership, prediction of
both source and surrogate model on the trigger set should be the same, which is done by margin-based watermarking since the margin
leads the surrogate model to include the rhombus in the same region. (right) The performance of the surrogate models with our method
and baseline watermarking methods on CIFAR-10 dataset. Ours outperforms the baselines in terms of both source model accuracy and

watermarking accuracy.

Kim et al. 2023, Margin-based Neural Network Watermarking
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Parameters

Parameters of Experiments

Unless stated otherwise, we use the following values of hy-
perparameters in our experiments: the size of the verified trig-
ger set n is set to be n = 100 for consistency with the concur-
rent works, confidence level a for Clopper-Pearson test from
Eq. (9) is set to be a = 0.05. In our experiments, we found
that better transferability of the verified trigger set is achieved
when no constraint on the performance of the proxy models

is applied, so the performance threshold parameter is set to be
T = 1.0.
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Integrity

It should be mentioned that a watermarking approach not
only should not affect the source model’s performance and
be robust to stealing attacks, it should also satisfy the prop-
erty of integrity. In other words, it should not judge non-
watermarked networks as watermarked ones. In trigger set-
based watermarking settings, checking if a model is stolen
may be thought of as a detection problem with certain false
positive and false negative rates. The first one corresponds to
the probability that a benign model is detected as stolen, and
the second one corresponds to the probability that a stolen
model is not detected as such.

Assuming that a stolen model belongs to the paramet-
ric set of proxy models Bs . (f), it is possible to provide
probabilistic guarantees that the one would be detected as
stolen by our method. In contrast, it is in general nontriv-
ial to guarantee that a benign model would not be detected
as stolen. With our method, such guarantees may be pro-
vided under certain modifications of the verification proce-
dure. Namely, one may assume that all the models that be-
long to the compliment Bs . (f) of the set of proxy models
Bs - (f) are not stolen ones. Then, the verification procedure

may be adapted: given models fi,..., fnn € Bs-(f) and

models f1,..., fm € Bs(f), the sample (z*,y*) is verified
iff:

Y= ) = = (),

(Y # fm(T").

In other words, it is also required that the models from
Bs - (f) are not agreed with the source model on the samples
from trigger set. It is notable that such a verification pro-
cedure requires careful parameterization of the set of proxy
models: underestimation of its parameters would lead to
some stolen models not being included in it, and overestima-
tion of its parameters may lead to the inclusion of the benign
models. In the supplementary material, we include additional
experiments on the integrity of our method.
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Transferability

In our approach, we assume that all the models from the para-
metric set B; - (f) are agreed in predictions on data samples
from unknown common set S(f, §, 7). In other words, if f(x)
is the class assigned by model f to sample z, the set S(f, J, 7)
is defined as follows:

S(f,0,7)={z: f(z) = f () Vf €Bs.(f)}.

If the stolen model belongs to the set of proxy models
Bs.-(f), a trigger set build-up from points from common set
S(f,9,7) would be a good candidate for ownership verifica-
tion: by design, the predictions of the source model and the
stolen model would be identical on such a set.

Since it is impossible to guarantee that a certain data
point belongs to the common set S(f, d, 7), we perform the
screening of the input space for the candidates to belong to

S(f,6,7).

Namely, given a candidate x, we check the agreement in
predictions of m randomly sampled proxy models f1, ..., fm
from B;.(f) and accept x as the potential member of
S(f,9,7) only if all m models have the same prediction. One
can think of the selection process of such points as tossing a
coin: checking the predictions of m proxy models represents
m coin tosses. The input data points represent unfair coins,
i.e., those with different probabilities of landing on heads and
tails. If the input point z and the index of proxy model i is
fixed, such an experiment A; = A;(x) is a Bernoulli trial:

Ay(z) = 1 with probability p(x),
7710 with probability 1 — p(x).

Let the success of the Bernoulli trial from Eq. (8) correspond
to the agreement in predictions of the source model f and
i—th proxy model f;. Thus, the screening reduces to the
search of input points with the highest probability p(z).

In our experiments, we estimate the parameter p(x) of the
corresponding random variable by observing the results of m
experiments A;(z), ..., A,(z). We use interval estimation
for p(z) in the form of Clopper-Pearson test [Clopper and
Pearson, 1934] that returns one-sided (1 — ) confidence in-
terval for p(x):

®

]P’(p(x) > B (%,t,m—H—l)) >1—a. (9

InEq.9, p(z) = B (%,t,m —t + 1) is the quantile from the
Beta distribution and the number of successes t = m.
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Experimental Setup + Evaluation

Datasets and Training

In our experiments, we use CIFAR-10 and CIFAR-100
[Krizhevsky et al., 2009] as training datasets for our source
model f. As the source model, we use ResNet34 [He et al.,
20161, which is trained for 100 epochs to achieve high clas-
sification accuracy (namely, 91.0% for CIFAR-10 and 66.7%
for CIFAR-100). We used SGD optimizer with learning rate
of 0.1, weight decay of 0.5 x 10~3 and momentum of 0.9.

Parametric Set of Proxy Models

Once the source model is trained, we initialize a parametric
set of proxy models Bs . (f). In our experiments, we vary
the parameters of the proxy models set to achieve better trig-
ger set accuracy of our approach. Namely, parameter § was
varied in the range [0.5,40] and 7 was chosen from the set
{0.1,0.2,1.0}. We tested different number of proxy models
sampled from B;s - (f) for verification. Namely, parameter m
was chosen from the set {1, 2,4, 8, 16, 32, 64, 128, 256}.

Evaluation Protocol
Once the verified trigger set Dy = {(x}, y;)}-, is collected
and surrogate model f* is obtained, we measure the accuracy

D] f) = o Y 1(WGD =) ©
(

z},y;)ED;

of f* on Dj to evaluate the effectiveness of our watermarking
approach.
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