

КОНФЕРЕНЦИЯ КИБЕРПОЛИГОНОВ

Вместе против цифровой уязвимости

24 апреля

г.Москва, Кибердом

Протрамма переподготовки: Противодействие киберугрозам в энергетической отрасли с использованием киберполигона Ampire

Григорьева Ирина Васильевна, ст.преподаватель

Янова Ольга Юрьевна, доцент

ФГБОУ ВО «КГЭУ»

Основные цели обучающей программы Ampire эрг

Подготовка специалистов для выявления и предотвращения основных киберугроз, характерных для энергетических предприятий и инфраструктуры отрасли

Развитие компетенций по проектированию и совершенствованию стратегий киберзащиты с учётом актуальных методов атак и требований отрасли

Освоение практических навыков реагирования на киберинциденты и восстановления работоспособности критических объектов с применением реальных сценариев

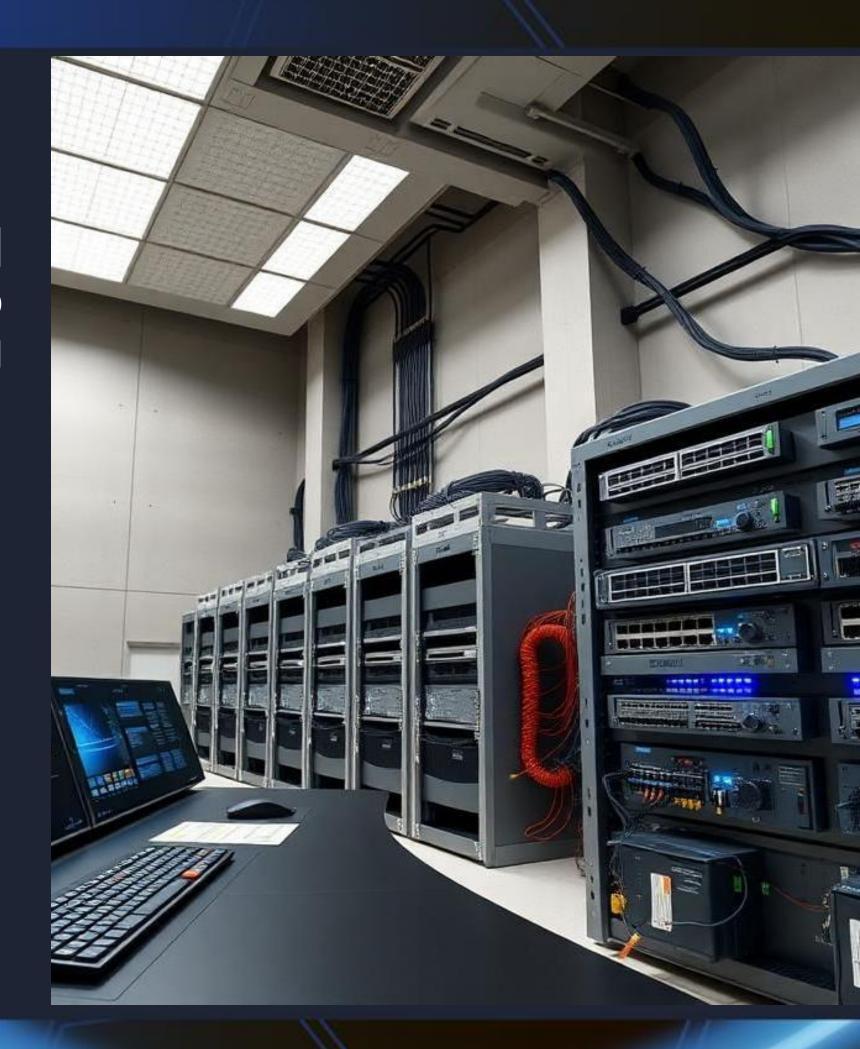
Роль энергетической инфраструктуры в современной экономике

- 1. Энергетическая инфраструктура является фундаментом функционирования промышленных, транспортных и бытовых систем. Любой сбой в её работе приводит к нарушению производственных процессов и жизнедеятельности.
- 2. Сохранение бесперебойной работы энергосистем важно для социальной стабильности страны. Защита энергетики напрямую отражается на национальной безопасности населения и конкурентоспособности экономики.

Кибербезопасность в энергетике: вызовы и новая реальность

Энергетика становится главной целью кибератак, и защита отрасли приобретает первостепенное значение. Рост числа инцидентов угрожает экономике, безопасности и стабильности общества, требуя специализированной подготовки и практического опыта специалистов

Основные направления угроз в энергетике



Атаки на SCADA и интеллектуальные сети (Smart Grid)

Инфраструктурные атаки на SCADA и Smart Grid затрагивают системы управления, нарушая стабильную подачу энергии и работу оборудования. Такие инциденты усугубляются цифровизацией энергопредприятий.

Вредоносное программное обеспечение в энергетике

Вредоносное ПО используется для саботажа, сбора информации или уничтожения данных. Проникновение в энергообъекты зачастую приводит к частичному или полному выводу оборудования из строя.

Релейная защита

это система автоматического обнаружения и отключения повреждённого оборудования в энергосети для:

- Предотвращения аварийного развития ситуации
 Минимизации ущерба оборудованию
 Обеспечения надёжности электроснабжения

Атака	Последствия
Подмена данных с датчиков	Ложные срабатывания/неотключения
Взлом уставок защиты	Некорректная работа алгоритмов
Блокировка срабатываний	Отказ защиты при аварии
Манипуляция GOOSE- сообщениями	Нарушение логики работы



Инциденты в отрасли: примеры и последствия

Волна атак в Восточной Европе привела к массовым отключениям электроэнергии, затронув миллионы потребителей и нарушив работу городской инфраструктуры.

Вредоносные программы вызвали воспламенение трансформаторов, что повлекло за собой значительные материальные убытки и опасность для персонала.

Атаки на добывающие предприятия

Инциденты в нефтегазовой отрасли завершались временной остановкой стратегического оборудования и срывом поставок сырья на экспорт.

Раскрытие критичных уязвимостей

Проведённые атаки выявили масштабные уязвимости в системах управления, что потребовало срочных мер по совершенствованию защиты энергообъектов.

Рост числа кибератак на объекты критической инфраструктуры (2019-2025)

Динамика демонстрирует ежегодное увеличение числа кибератак, особенно в сфере энергетики. Современные киберугрозы требуют своевременной переподготовки специалистов.

Постоянный рост атак указывает на необходимость регулярного повышения квалификации сотрудников для защиты критических объектов энергетики

Целевая аудитория программы

Продвинутый курс

Технические специалисты ITнаправления в энергокомпаниях

Специалисты в области информационных технологий, заинтересованные в углублённом изучении защиты инфраструктуры энергетики и внедрении современных решений в промышленной среде.

Инженеры, отвечающие за обеспечение безопасности данных и систем в энергетических компаниях, желающие повысить квалификацию для противодействия новым киберугрозам.

Базовый курс

Рядовые сотрудники в энергокомпаниях

Работники электростанций, сетевых и генерирующих предприятий, чьи задачи связаны с эксплуатацией технологических комплексов и минимизацией рисков сбоев и атак.

Молодые профессионалы и студенты профильных вузов, стремящиеся освоить навыки анализа угроз и построения стратегий защиты критических объектов.

Структура обучения: теория и практика на киберполигоне Ampire

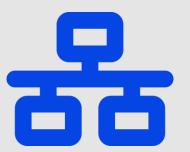
Теоретическая часть ориентирована на разбор современных угроз, особенностей инфраструктуры энергетики и построение надёжных систем киберзащиты. Содержит анализ уязвимостей и принципов противодействия современным типам атак.

Практический модуль включает работу на киберполигоне Ampire, где слушатели моделируют реальные атаки, осваивают сценарии реагирования и внедряют комплексные решения для защиты критических объектов энергетики.

Ampire **ЗБР**° Ключевые темы теоретического обучения

Актуальные угрозы

Разбор современных киберугроз, нацеленных на энергетические предприятия, с детальным рассмотрением методов и мотивов атакующих, используемых сценариев и последствий реализованных инцидентов.


Методы защиты

Изучение передовых методов и инструментов для защиты инфраструктуры энергетики: от периметровой обороны до средств обнаружения вторжений и реагирования на инциденты.

Уязвимости систем

Анализ уязвимых мест в системах управления и IT-инфраструктуре, методов их выявления, а также событий, связанных с эксплуатацией известных и новых технических недостатков.

Требования к критическим объектам

Ознакомление с требованиями к безопасности энергетической инфраструктуры, стандартами и нормативами, а также порядком обеспечения непрерывности функционирования объектов.

Примеры кейсов по кибербезопасности объектов энергетической инфраструктуры

- 1. Body Несанкционированный доступ к SCADA через слабый пароль
- 2. Фишинговая рассылка для инженеров подстанции
- 3. DDoS-атака на веб-портал энергокомпании
- 4. Внедрение вредоносного ПО через USB-носитель
- 5. Атака на ІоТ-сенсоры в распределённой сети
- 6. Перехват управления системой резервного питания
- 7. Утечка конфиденциальной информации через облачные сервисы
- 8. Социальная инженерия для получения доступа к подстанции
- 9. Нарушение сегментации сети между ИТ и ОТ
- 10.Атака на систему мониторинга энергопотребления с использованием вредоносных обновлений

Практические тренировки на киберполигоне: этапы и задачи

01

На киберполигоне Ampire участники отрабатывают моделирование актуальных кибератак на энергетическую инфраструктуру в условиях, приближённых к реальным. Каждый сценарий построен на основе анализа распространённых методов атак.

02

В ходе тренировки осуществляется пошаговая отработка реагирования: от обнаружения нарушения до нейтрализации угрозы и восстановления технологических процессов. Это формирует практические навыки оперативной защиты.

Григорьева Ирина Васильевна

Янова Ольга Юрьевна ianova.oiu@kgeu.ru

